A Comparative Evaluation of Xeon Phi Platforms Based on a Hodgkin-Huxley Neuron Simulator

George Chatzikonstantis, Diego Jiménez, Esteban Meneses, Christos Strydis, Harry Sidiropoulos, Dimitrios Soudris

- Microprocessors and Digital Systems Lab, National Technical University of Athens
- Advanced Computing Laboratory, Costa Rica National High Technology Center
- School of Computing, Costa Rica Institute of Technology
- Neuroscience Department, Erasmus Medical Center Rotterdam
Problem Complexity

- Many FLOPs per neuron
- Massive network
- Densely connected networks
- Real-time response is currently impossible
Infoli Simulator - Description

- Tri-compartmental model:
 - Dendrite: communication
 - Soma (body): computation
 - Axon: output

- Gap Junction mechanic
 The communication between dendrites in the network

Performance Bottleneck!
Infoli Simulator - Description
Infoli Simulator - Parallelization

- **OpenMP threads, up to 240 on the KNC and 256 on the KNL**
- **Data Partitioning:**
 - Each thread handles a subnetwork
 - Network is divided as evenly as possible
- **Need for data exchange between threads**
- **Neurons are calculated independently:**
 - Threads operate in parallel
 - Each thread vectorizes calculation for more parallel neuron processing
From Knights Corner to Knights Landing

- **Out-the-box measurements from the KNC on the KNL.**
- **Ease of transferring:** only recompilation needed
- **KNL vs KNC?**
 - Better single-threaded performance (3x TFPs)
 - More VPUs, better vectorization support
 - High Bandwidth MCDRAM (set to cache mode)
 - Increased amount of cores, maximum amount of threads
- **Experimental evaluation**
 - Small (1000) to large (10k) neuron networks
 - Connectivity densities: from 0 up to 1 k GJs per neuron.
 - Exploration of simulation speed, energy used and thread efficiency.

Intel’s 1st Generation
Xeon Phi: Knights Corner Coprocessor Card
Model: 3120p

Intel’s 2nd Generation
Xeon Phi: Knights Landing Processor
Model: 7210

Xeon Baseline model: E5-2609-v2 (4 cores, Ivy Bridge)
Results - Execution time

- Low-density networks
- High-density networks
Results - Energy Consumption

Low-density networks

High-density networks
Results - Efficiency

High-density network of 1000 neurons

High-density network of 10k neurons
Results - Analysis

- Sparse networks are more serial in nature, so they operate well on KNL (superior single-threaded performance).
- Denser networks heavily favor vectorization-enabled implementations:
 - Vectorization on the KNC is significantly better after a certain point.
 - KNL performance is worse for some of the heaviest workloads.
- KNL’s lower TDP leads to significant energy gains.
 - Gap lessens with higher workload.
 - On heavier workloads, KNL’s lower TDP offset by increased simulation times.
- KNL very efficient for 1 thread per core, however efficiency takes a significant hit past 100 threads.
- KNC retains acceptable efficiency for 200 threads.
Conclusions and Insights

- On average, 2.4x speedup, comparable to expected single thread performance upgrade of KNL over KNC (3x).
- Lower TDP leads to overall energy savings (~50%) on KNL. Up to 75% saving on low density networks!
- Thread efficiency suffers on the KNL possibly because of lack of fine-tuning of the application to the architectural details of the platform.
 - Best practice suggests ~2 threads per KNL core.
- KNL displays greater predictability in performance.
Future Work

- Fine tuning for the KNL:
 - VPU optimal usage
 - Thread efficiency

- Exploration of MCDRAM modes and clustering modes

- Hybrid MPI + OpenMP for multinode systems
 - Usage of Intel’s Omnipath technology
Thank you!