Parallel Programming Tools in Python

Guillermo Cornejo-Suárez Esteban Meneses

Escuela de Computación, Tecnológico de Costa Rica Colaboratorio Nacional de Computación Avanzada, Centro Nacional de Alta Tecnología

August 23rd, 2017

Cornejo, Meneses (TEC - CeNAT)

Parallel Programming Tools in Python

A b

Why Python?

- Five rankings on the popularity of programming languages, with different methodologies, list Python among the first 4.
- In 2015 $\sim 10\%$ of all computer jobs at TACC were Python applications.
- Strong scientific code base.
- Ease of use.

Why Parallel Python?

- Multi-core and many-core processors represent industry's answer to Moore's technical halt.
- As complexity grows, applications must take advantage of modern architectures.
- New applications must be parallel.

Parallel Python as research field

- Popularity
- Growth potential
- Absence of *de facto* standard for parallel computing.

Providing parallelism in the Python programming language is a promising research field.

Cornejo, Meneses (TEC - CeNAT)

Parallel Programming Tools in Python

< ロ > < 同 > < 回 > < 回 >

Methodology

Search engines with search key "parallel python"

- Indexed publications:
 - IEEExplore
 - ACM Digital Library
 - ScienceDirect
 - SpringerLink
- Google Scholar
- Commercial Google

Results were sorted by date in descending order from 2016 until 1993.

Inclusion criteria

- The project provides some kind of parallelism to the Python programming language.
- The project aims general programming rather than domain-specific.

35 projects were included

Cornejo, Meneses (TEC - CeNAT)

Parallel Programming Tools in Python

< ロ > < 同 > < 回 > < 回 >

Classification criterion

- Execution strategy: Interpreted, binary binding, compiled.
- Parallel paradigm: Data, Task, Message Passing, MapReduce.
- Vector Data oriented.
- 4 Language support: Full, Subset.
- Code modifications: Function calls, Job submission, Annotations, None.
- Target platform: SMP, Clusters, GPU.

Classification table

Project	Execution	Parallel	Vector data	Language	Code modifications	Parallel platform	Latest release
	strategy	paradigm	oriented	support			
Bohrium [14]	Interpreted	Data	Yes	Full, Python 2	None	SMP. GPU. Clusters	0.3. Apr-2016
PvStream [15]	Compiled	Data	Yes	Subset, Python 2	None	GPU	0.1. Jul-2011
Dask.array [16]	Interpreted	Data	Yes	Full, Python 3	FunCall	SMP, Clusters	0.13.0, Jan-2017
PupyMPI [17]	Interpreted	MsgPsg	No	Full, Python 2	FunCall	SMP. Clusters	0.9.5. May-2011
Papy [18]	Interpreted	Task	No	Full, Python 2	JobSub	SMP, Clusters	1.0.8, Nov-2014
GAIN [19]	Binary binding	Data	Yes	Full, Python 2	FunCall	Clusters	1.0, 2009
Global Arrays [20]	Binary binding	Data	Yes	Full, Python 2	FunCall	Clusters	5.5, Aug-2016.
mpi4Py [21]	Binary binding	MsgPsg	No	Full, Python 2-3	FunCall	SMP, Clusters	2.0.0, Oct-2015
Pythran [22]	Compiled	Data	Yes	Subset, Python 3	Annotations	SMP	0.7.6.1, Jul-2016
ASP [23]	Binary binding	Data, Task	No	Full, Python 2	JobSub	SMP, GPU	0.1.3.1, Oct-2013
Dispel4py [24]	Interpreted	Data, Task	No	Full, Python 2-3	JobSub	SMP, Clusters	1.2, Jun-2015
PMI [25]	Interpreted	Data	No	Full, Python 2-3	FunCall	SMP, Clusters	1.0, Dec-2009
Jit4OpenCL [26]	Compiled	Data	Yes	Full, Python 2	Annotations	SMP, GPU	1.0, 2010
MRS [27]	Interpreted	MapRed	No	Full, Python 2-3	FunCall	Clusters	0.9, Nov-2012
Pydron [28]	Interpreted	Task	No	Subset	Annotations	Clusters	-
CoArray [29]	Interpreted	Data	Yes	Full, Python 2	FunCall	Clusters	2004
PyCuda, PyOpenCL [30]	Binary binding	Data	Yes	Full, Python 2-3	FunCall	SMP, GPU	2016.2, Oct-2016
SCOOP [31]	Interpreted	Task	No	Full, Python 2-3	JobSub	SMP, Clusters	0.7.1.1, Ago-2015
DistArray [32]	Interpreted	Data	Yes	Full, Python 2-3	JobSub	SMP, Clusters	0.6, Oct-2015
Dispy [33]	Interpreted	Data, MapRed	No	Full, Python 2-3	JobSub	SMP, Clusters	4.6.17, Sep-2016
IpyParallel [34]	Interpreted	Data, Task	No	Full, Python 2-3	JobSub	SMP, Clusters	5.3.0, Oct-2016
PyRo [35]	Interpreted	MsgPsg	No	Full, Python 2-3	Annotations, FunCall	Clusters	4.50, Nov-2016
Parallel python [36]	Interpreted	Task	No	Full, Python 2-3	JobSub	SMP, Clusters	1.6.5, Jul-2016
JUG [37]	Interpreted	Task	No	Full, Python 2-3	Annotations, FunCall	SMP, Clusters	1.3.0, Nov-2016
Multiprocessing [38]	Interpreted	Task, Data	No	Full, Python 2-3	FunCall	SMP, Clusters	3.6, Jul-2016
Copperhead [39]	Binary binding	Data	Yes	Subset, Python 2	Annotations	GPU	2013
Celery [40]	Interpreted	Task	No	Full, Python 2-3	Annotations, FunCall	SMP, Clusters	4.0.0, Nov-2016
Disco [41]	Interpreted	MapRed	No	Full, Python 2	Annotations, FunCall	SMP, Clusters	0.5.4, Oct-2014
Spark [42]	Binary binding	Task	No	Full, Python 2-3	FunCall	Clusters	2.0.2, Nov-2016
Theano [43]	Binary binding	Data	Yes	Full, Python 2-3	FunCall	SMP, GPU, Clusters	0.8.2, Apr-2016
Numba [44]	Compiled	Data	Yes	Full, Python 2-3	Annotations	SMP, GPU	0.29.0, Oct-2016
Joblib [45]	Interpreted	Task	No	Full, Python 2-3	JobSub, Annotations	SMP	0.10.3, Oct-2016
Hadoopy [46]	Binary binding	MapRed	No	Full, Python 2	JobSub	Clusters	0.5.0, Jun-2012
PyMW [47]	Interpreted	Task	No	Full, Python 2	FunCall	Clusters	0.4, Jun-2010
Pyfora [48]	Compiled	Data	No	Subset, Python 2	None	Clusters, SMP	0.5.8, Set-2016

 TABLE I

 Classification of tools that provide parallelism in the Python programming language.

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ < つ </p>

Cornejo, Meneses (TEC - CeNAT)

Parallel Programming Tools in Python

Remarks: Execution strategy

Cornejo, Meneses (TEC - CeNAT)

Parallel Programming Tools in Python

August 23rd, 2017 9 / 26

Remarks: Parallel paradigm

Cornejo, Meneses (TEC - CeNAT)

Parallel Programming Tools in Python

August 23rd, 2017 10/26

э

Remarks: Vector data oriented

- 37% of the projects provide vectors as principal structure.
- All of the expose data parallelism.

Cornejo, Meneses (TEC - CeNAT)

< ロ > < 同 > < 回 > < 回 >

Remarks: Language support

- 86% of the projects supports the full language.
- 40% only support Python 2.
- Plans to upgrade to Python 3 are mixed, strongly depending on project continuity.

Remarks: Code modifications

Remarks: Parallel platform

This classification is no mutually exclusive, many projects run on two or three platforms, percentages are then pondered accordingly.

Cornejo, Meneses (TEC - CeNAT)

Remarks: Latest release

- 48% of the projects released a new version the last year.
- 60% released a new version in the past two years.
- 46% have an stable release.

A B b 4 B b

< 6 b

Co-occurrence matrix (0)

Cornejo, Meneses (TEC - CeNAT)

Parallel Programming Tools in Python

August 23rd, 2017 16 / 26

Co-occurrence matrix (1)

Cornejo, Meneses (TEC - CeNAT)

Parallel Programming Tools in Python

August 23rd, 2017 17 / 26

Co-occurrence matrix (2)

Cornejo, Meneses (TEC - CeNAT)

Parallel Programming Tools in Python

August 23rd, 2017 18 / 26

Co-occurrence matrix (3)

Cornejo, Meneses (TEC - CeNAT)

Parallel Programming Tools in Python

August 23rd, 2017 19 / 26

Co-occurrence matrix (4)

Cornejo, Meneses (TEC - CeNAT)

Parallel Programming Tools in Python

August 23rd, 2017

20 / 26

Co-occurrence matrix (5)

Cornejo, Meneses (TEC - CeNAT)

Parallel Programming Tools in Python

August 23rd, 2017 21 / 26

Co-occurrence matrix (6)

Cornejo, Meneses (TEC - CeNAT)

Parallel Programming Tools in Python

August 23rd, 2017 22 / 26

Co-occurrence matrix (7)

Cornejo, Meneses (TEC - CeNAT)

Parallel Programming Tools in Python

August 23rd, 2017 23 / 26

Conclusions

- Parallel Python is a promising research field.
- Community has given a plethora of alternatives, this work presents a handy comparative analysis.

Conclusions (1)

- Using Python interpreter to run the code or using external code.
- To offer data parallelism or task parallelism.
- Majority of projects support full language, except compiled projects.
- Parallelism is exposed as function calls or explicit job submission.
- Targeting SMP and clusters platforms is common.

Guillermo Cornejo Suárez - GmoCornejoS@gmail.com

Cornejo, Meneses (TEC - CeNAT)

Parallel Programming Tools in Python

August 23rd, 2017 26 / 26

3 > 4 3