Full-wave simulation of mode-converted electron Bernstein waves at very low magnetic field in the SCR-1 Stellarator

<u>R. Solano-Piedra¹</u>, A. Köhn², V.I. Vargas¹, E. Meneses³, D. Jiménez³, A. Garro-Vargas³,
 F. Coto-Vílchez¹ M.A. Rojas-Quesada¹, D. López-Rodríguez¹, J. Sánchez-Castro¹,
 J. Asenjo¹ and J. Mora¹

¹ Plasma Laboratory for Fusion Energy and Applications, Instituto Tecnológico de Costa Rica, Cartago, P.O.Box 159-7050, Costa Rica.
² IGVP, University of Stuttgart, Germany.

³ Advanced Computing Laboratory, Costa Rica National High Technology Center, CENAT, San José, Costa Rica

SCR-1 is a 2-field period small modular Stellarator ($R = 247.7 \text{ mm}, R/a = 6.2, \iota_a = 0.264$) with a very low magnetic field ($\langle B \rangle = 41.99 \,\text{mT}$) and an ECR heating frequency of 2.45 GHz (5kW). Few studies on conversion of electrostatic Bernstein waves under these conditions have been performed in Stellarators [1, 2]. This work presents the results of converting electrostatic Bernstein waves in the SCR-1 Stellarator using the full wave code IPF-FDMC [3], taking the 3D magnetic field obtained by VMEC code as input and the experimental electron density profile obtained using a Langmuir probe. New microwave heating scenarios that take the SCR-1's vacuum vessel into account in order to improve the O-X conversion due to reflection of the incoming radiation from the ECRH system are presented. The results indicate a single pass O-X mode conversion is around 3%. The possible location of a microwave antenna and its characteristics for proper function in SCR-1 stellarator are explained. Additionally, the improvements in BS-SOLCTRA code (Biot-Savart Solver for Compute and Trace Magnetic Fields) are shown. This code was developed by our research group to calculate 3D magnetic fields and display the magnetic surfaces in SCR-1. The road to convert it into a parallel and high-performance computing platform for tracing particles in SCR-1 is shown. Finally, the results of the comparison of the flux surfaces measured with an electron beam and fluorescent rod, with computed flux surfaces by means of BS-SOLCTRA code are shown. Similarly, the designs of the magnetic diagnostics (Rogowski, Voltage Loops and Mirnov) and the bolometer that will be installed in SCR-1 are presented.

References

- [1] Y. Podoba et al, Physical Review Letters. 98, 25 (2007).
- [2] R. Ikeda et al, Physics of Plasmas, 15, 7, (2008).
- [3] A. Köhn et al, Plasma Physics and Controlled Fusion 55, 1 (2013).