

Parallelization of a Magnetohydrodynamics Model for Plasma Simulation

- Software for visualization and study of magnetic fields on plasma cells in 2D
- Solves a set of differential equations
- Generates visualizations of the magnetic field evolution in time

Visualization of magnetic fields of plasma eddies with
PCell

7-9 NOVIEMBRE 2018 • HOTEL CROWNE PLAZA EL SALVADOR • WWW.CONCAPAN2018.ORG

💼 🕼 🔃 🔿 🧰 🛟

- The original PCell version:
 - Limited the amount of spatial points that could be simulated
 - Was inefficient, specially when increasing the time scale of the simulations
- The researchers wanted to expand the model and accelerate it to broaden the simulation ranges and decrease the execution time

Magnetohydrodynamics

- Studies the interaction between electromagnetic fields and conductive fluids in motion
- Magnetic fields induce electric currents on conductive fluids in motion
- These currents affect the magnetic fields reciprocally
- It is a combination of Maxwell's electromagnetism and hydrodynamics
- Under this approach, plasma is seen as a single fluid with very high conductivity

- It is a scalar parameter analogous to the Reynolds number used in fluid mechanics
- It determines the turbulence of the fluid, and therefore its magnetic field

Simulation done with magnetic reynolds number = 30

7-9 NOVIEMBRE 2018 • HOTEL CROWNE PLAZA EL SALVADOR • WWW.CONCAPAN2018.ORG

💼 🕼 🔃 🖾 🧰 🛟

Methodology

O A

()

% (cumulative	self		self	total	
time	seconds	seconds	calls	ms/call	ms/call	name
91.94	0.34	0.34	100	3.40	3.60	convect
5.41	0.36	0.02	100	0.20	0.20	mean_field
2.70	0.37	0.01	1	10.00	10.00	potinc
0.00	0.37	0.00	100	0.00	0.00	itoa
0.00	0.37	0.00	100	0.00	0.00	reverse
0.00	0.37	0.00	1	0.00	360.17	convec_plasma
0.00	0.37	0.00	1	0.00	0.00	create form Convection
0.00	0.37	0.00	1	0.00	0.00	create_gnuplot

0

- Search for areas where there is:
 - Data dependency
 - Functional dependency
 - Processing bottlenecks

7-9 NOVIEMBRE 2018 • HOTEL CROWNE PLAZA EL SALVADOR • WWW.CONCAPAN2018.ORG

💼 🕼 🔃 🔿 🧰 🛟

Improvements to the program

- Replacement of static, fixed-dimension arrays for dynamic ones
- Removal of unnecessary and repetitive cycles and functions
- Optimization of the iteration over the spatial matrix
- Memory leak removal with the help of Valgrind

()

Hardware used

- Kabré cluster at CeNAT
- Intel Xeon Phi architecture
- 64 physical cores on each node

7-9 NOVIEMBRE 2018 • HOTEL CROWNE PLAZA EL SALVADOR • WWW.CONCAPAN2018.ORG

💼 🕼 🔃 🛋 🧰 📥

Original program flow

After paralellization

Evaluation of results

- Correlation index between the programs' output
- Test of difference in means
- Descriptive analysis
- Output evaluation by an expert

• Result: There's no statistically significative difference between the outputs

Performance tests

Spatial scalability

Temporal scalability

- Applying a parallelization methodology to a scientific software
- Improvement of spatial and temporal scales of the simulation model
- Decreasing the total execution time (~41x acceleration)
- Parallel algorithm for simulation of electromagnetic fields in convective plasma cells

0

Future work

- Expand the model to three spatial dimensions
- Integrate with ParaView to improve visualization
- Parallelization with MPI

