
LEVERAGING MODERN MULTI-CORE PROCESSORS FEATURES TO EFFICIENTLY DEAL WITH SILENT ERRORS, JUNE 2017 1

Leveraging modern multi-core processors features
to efficiently deal with silent errors

Diego Pérez Arroyo∗, Esteban Meneses Rojas∗, Cesar Garita Rodrı́guez∗
∗Costa Rica Institute of Technology

Abstract—Since current multi-core processors are more com-
plex systems on a chip than previous generations, some transient
errors may happen, go undetected by the hardware and can po-
tentially mess up the result of an expensive calculation. Because of
that, techniques such as replication or checkpointing are utilized
to detect and correct these soft errors; however these mechanisms
are highly expensive adding a lot of resource overhead. Hardware
Transactional Memory exposes a very convenient and efficient
way to revert the state of a core’s cache, which can be utilized as
a recovery technique. We created an experimental prototype that
uses such feature to recover the previous state of the calculation
when a soft error has been found. Through the combination of
HTM, Hyper-Threading and or Memory Protection Extensions,
the performance, applicability and confidence of our technique
may be further improved.

I. INTRODUCTION

Because of the power wall preventing single core proces-
sors manufactures from keeping the increase of frequency as
expected, multi-core processors are becoming more complex
system on a chip. These systems are more prone to transient
errors compared to previous generations of processors, because
manufactures continuously boost performance with higher
circuit density using really small transistor sizes and at the
same time achieving higher energy efficiency by operating at
lower voltages [1]. The problem turns even more serious since
a lot of these errors are not detected by the hardware, such
as bit flips, and can potentially mess up the entire calculation.
Such silent errors are considered a major problem for future
very large data-centers and supercomputers [2]. There are
a wide range of causes for such faults in CPUs, including
dynamic voltage scaling, cosmic radiation, physical altitude of
the data center, power supply faults, among others. The most
common solution to deal with such silent errors is replication,
however this technique is extremely costly adding typically
200% of resource overhead.

There are two main challenges when dealing with such
kind of errors. The first one is being able to detect that
an error happened. The second is correcting the error and
ensuring that the final result of the calculation is correct.
Recent contributions [1] [3] tend to show that checkpointing
techniques provide the best compromise between transparency
for the developer and efficient resource usage; still remaining
expensive with about 100% of overhead.

To reduce this overhead, we think that some of the features
provided by recent processors, such as hardware-managed
transactions, hyper-threading, memory protection extensions,
are great opportunities to implement efficient error detection

and recovery. The pioneer work presented in [1] is a first
step towards leveraging hardware transactional memory for
recovering application state. The goal of this investigation is to
explore opportunities to reduce the cost of rollback-recovery
mechanisms by combining the use of mentioned features in
current multicore processors.

For that, an experimental prototype has been built that
detects and corrects artificially injected errors. Such program
uses hardware transactional memory through Intel TSX tech-
nology as a recovery mechanism when an error has been found
and scales properly when Intel Hyper Threading technology
is in use.

The rest of the paper is structured as follows, in the
next section we provide some concepts that are necessary to
understand properly the rest of the document, in section 3 the
background and previous work is presented, section 4 is where
we list the details of our prototype that uses transactional
memory as a recovery mechanism, in section 5 we show
some preliminary results of said prototype and in section 6
we conclude and discuss future work.

II. CONCEPTS

A. Hardware Transactional Memory

Hardware Transactional Memory (HTM) follows the same
ideology of database transactions, where a set of instructions
are managed as if they were just one instruction, if the trans-
action succeeds then every operation executed is committed to
the database, if not every operation is reverted and the state of
the database remain the same as when the transaction began.
The difference with HTM is that the goal of a transaction is
not to commit changes to a database but to main memory.
When a transaction begins the values of variables modified
are stored in the cache and if no collisions are detected then
those changes are atomically committed to RAM, so every
other core can view the new values [4].

Intel introduced the Transactional Synchronization Exten-
sions (TSX) as part of the Haswell Instruction set architecture
[5], it is the implementations of HTM of Intel but not the
only one, in this document we center on multi-processors
chips that have this feature, specifically the Intel Restricted
Transactional Memory (RTM) interface, which exposes a new
set of primitives:

• xbegin, initializes a new transaction.
• xend, marks the current transaction as successful, and

therefore commits atomically the changes to RAM.
• xtest, tells if one is inside a transaction.



LEVERAGING MODERN MULTI-CORE PROCESSORS FEATURES TO EFFICIENTLY DEAL WITH SILENT ERRORS, JUNE 2017 2

• xabort, explicitly causes an abortion of the current
transaction and restores the state of the core as it was
at the latest successful execution of xbegin.

Transactional Memory was originally proposed as a better
way to achieve high performance lock-based synchronization,
yet easy to implement, in applications with concurrent access
to shared memory. Intel TSX ensures the same results as hav-
ing a coarse-grained lock, but allows not conflictive operations
to occur without the delay that coarse grained locks would
have injected [6].

Internally in Intel TSX, transactions have a read and write
sets, to keep track of what has been read and modified, such
information is temporarily stored in L1 cache. The execution
model is optimistic, meaning it does not block (as a mutex
does) a concurrent execution of the code, instead to detect
conflicts in parallel transactions an optimized cache coherency
protocol is used; two transaction having the same memory
location in their read sets does not cause an abortion, but if
one reads a variable that is also present in another transaction
write set, the first transaction is aborted. If a transaction was
aborted (explicitly or implicitly) the execution jumps to an
abort handler (that has to be provided), where usually the
transaction is retried a number of times before going to a
fallback path where progress should be guaranteed, in case
the code cannot be executed transactionally [1].

Even though its original purpose, Intel TSX also provides
strong isolation guarantees and a way to rollback that can be
utilized as a recovery mechanism, yet there are several design
choices that does not make the use of this feature applicable
to fault tolerance obvious. Firs of all, it does not guarantees
that a transaction will eventually commit, even when applied
to sequential code [7]. Since it uses the core’s cache to
temporarily keep track of reads and writes, the amount of
memory is limited to the physical capabilities of the processor.
Also there is a time limit (based on the interval of timer
interrupts) of how much a transaction can last before it is
aborted [1]; and lastly there are unfriendly operations (such as
system calls) that force a core to abort any active transactions
[1]. Thus, the importance of a fallback path is vital.

B. Hyper-Threading

Hyper-Threading Technology from Intel makes a single
physical processor appear as two logical processors; the phys-
ical execution resources are shared and the architecture state
is duplicated for the two logical processors. From a software
or architecture perspective, this means operating systems and
user programs can schedule processes or threads to logical
processors as they would on multiple physical processors.
From a micro-architecture perspective, this means that instruc-
tions from both logical processors will persist and execute
simultaneously on shared execution resources [8].

Hyper threading does not do much for single thread work-
loads, but when multiple threads can run in parallel there
is a significant performance improvement, because it ensures
that when one logical processor is stalled the other logical
processing unit (on the same core) could continue to make for-
ward progress (without context switching). A logical processor

may be temporarily stalled for a variety of reasons, including
servicing cache misses, handling branch mispredictions, or
waiting for the results of a previous instruction. [8].

C. Memory Protection Extensions (MPX)

Memory Protection Extensions from Intel includes a set
of primitives for pointers bound checking, as well as new
registers for storing bounds data. Its original purpose is to
check, using new hardware features that can be used by
software, that memory references defined at compile time
don’t become a source of uncertainty at runtime due to buffer
overflow or underflow (either way the bonds are violated).
MPX main goal is a way to protect memory deficiencies in
unsafe languages [9].

Whenever a pointer is used, with Intel MPX the requested
memory reference is validated to be inside the pointed asso-
ciated limits, hence preventing out-of-bound memory access.
Buffer overruns account for a considerable amount of all bugs
encountered in a typical C, C++ application. [10]

III. PREVIOUS WORK AND BACKGROUND

In this section we present and review how HTM, hyper
threading and MPX have been used to deal with soft errors.
We try to identify the vulnerabilities or limitations of each
solution in order to establish our path to follow.

Intel TSX is primarily target for synchronization and ex-
hibits several design restrictions that make the use of this
technique for recovery purposes not trivial [1]. HAFT: Hard-
ware Assisted Fault Tolerance in [1] relies on Instruction
Level Redundancy (ILR) to detect faults and HTM (Intel TSX)
to correct them. In order to accomplish fault tolerance, first
it replicates the instructions of the application and integrity
checks are recurrently added. Once this step is performed the
application is wrapped in HTM-based transaction in order to
be able to recover from a fault. When an error is detected by
the ILR checks, the transaction is explicitly rolled back, the
state of the application is restored before the transaction began
and the execution is retried a fixed number of times until it is
executed without transactions.

The best effort approach in HAFT of retrying a transac-
tion a static number of times before trying again without
using HTM may be considered quite dangerous. If an error
occurs in this non-transactional moment ILR has no choice
but to permanently abort the execution of the program; this
is definitely worse than adding extra overhead by trying a
different recovery technique and ensuring a correct completion
of the application. Mostly this design choice in HAFT is
driven by the restrictions that Intel TSX currently exhibits,
the technique was originally thought for small critical sections
and therefore there are constraints that limits the use of the
feature. Intel TSX transaction size is limited by the CPU cache
size and by the timer interrupt interval; also there are a lot
of ”unfriendly” instructions (signals/interrupts) that cause the
transaction to abort. HAFT therefore presents a ”transactifica-
tion” algorithm that heuristically wraps the application code in
HTM-transactions, taking into account the limitations of Intel
TSX.



LEVERAGING MODERN MULTI-CORE PROCESSORS FEATURES TO EFFICIENTLY DEAL WITH SILENT ERRORS, JUNE 2017 3

In [9] Oleksenko et.al present another option to use Intel
version of hardware transactional memory as recovery mech-
anism against transient errors. They focus more on errors
caused by bit-flips in data pointers, which can be catastrophic
especially if the pointer is not to a basic type but a more
complex data structure, because it can potentially provoke a
considerable amount of data loss.

In order to detect soft errors in pointers they use Intel
Memory Protection Extensions. This technology basically adds
a set of instructions for pointers bound checking. The main
idea for identifying the errors in pointers lies in the fact that if
a fault occurs in a pointer, the new value will probably violate
the corresponding bounds; the authors also mention that if
more than a single event upset (SEU) happens in the same
pointer then it will be more probable to detect such incorrect
state, because the bound checking will more likely fail. [9].

MPX original purpose is a way to protect memory limi-
tations in unsafe languages, like buffer over runs and even
though the idea of using it for fault detection in pointers is
quite novel and ingenious, the authors in the paper [9] admit
there are a lot subjects not yet explored that they have to keep
working on. Another drawback of the solution is that it only
detects pointer fault, making it a technique which has to be
used in coordination with another one in order to be achieve
complete fault tolerance.

Another reference where HTM is used as a method re-
covery mechanism is in [11] called POSTER, Fault Tolerant
Execution on COTS Multi-core Processors with Hardware
Transactional Memory Support. In it a software/hardware
hybrid approach is proposed which leverages Intel TSX to
support implicit checkpoint creation and fast rollback. The
authors combine a software based redundant execution for
detecting faults with hardware transactional memory to restore
the state of the application if necessary.

The main idea of the paper is to redundantly execute each
user process and to instrument signature-based comparison
on function level. The error detection is allowed given the
loosely coupled execution of both processes and with the
encapsulation of blocks in transactions, error recovery is
realized. For an efficient comparison of both instances, for
each block a signature is created (which uniquely identifies
it) and shared from the master project to its duplicate. Before
committing the transaction, the locally calculated signature and
the leading process signature are compared and if an error is
detected a restart of the block is initiated [11].

This proposal has a disadvantage that HAFT also has,
in which since the use of TSX alone does not guarantee
that a non-conflictive transaction will eventually commit and
therefore random aborts of the whole application may occur.

IV. DESIGN OF THE PROTOTYPE

We have created a prototype that uses Intel’s Hardware
Transactional Memory (HTM) to recover from artificially
injected errors and use replication to detect them. Basically
the following happens, we keep a global array of work, in
which for each entry a calculation (calculus function) must
be performed, every thread created is assigned a range of

this array to work on, by the end the length of the array is
divided as equally as possible among the number of threads
so each one has about the same amount of work. This scheme
represents a very common way of designing parallel programs,
multiple values can be calculated this way. In the calculus
function there is a fixed probability that an error occurs
(meaning the returned result may differ in different executions
of the same function with the same parameters). The routine
each threads executes is a loop that iterates over the global
array of work only in its personal range, for each entry before
executing the calculus function twice (replication) it begins
a hardware memory transaction, if both executions of the
calculation differ then it aborts the current transaction, causing
all variables that were modified in such iteration to revert its
state to the one they had before starting the transaction. Once
in the error handler routine we identify possible causes of the
transaction failure (it could have been implicitly or explicitly
aborted, due to a memory conflict with another thread or a
soft error detection) and if a retry is possible we execute the
iteration a fixed number of times (5 in our case), before trying
again without transactions; otherwise it moves to the next entry
of the array. After the loop, each thread writes in another
global array the partial result of its execution, so all results
are merged at the end into one.

The fact that GCC supports HTM makes it easy to test and
use Intel’s TSX primitives to mark the beginning, abortion
or completion of a hardware memory transaction [13]. The
use of Hyper Threading happens without explicit instructions
from the programmer, however it has been taking into account
for building the application. Since Hyper Threading duplicates
the architectural state for the two logical cores on each real
core and HTM uses cache memory to save local values before
pushing them to RAM, the size of the transactions must be
small enough so it does not fail for storage issues and Hyper
Threading can successfully create a copy of the architectural
state.

V. RESULTS AND ANALYSIS

In this section we want to measure two aspects regarding
our prototype:

1) the expected total performance overhead.
2) the success rate of (how close was to identify and correct

all soft errors).
For that we created an instance (a large sum of integers) of

our prototype where we know the total result being calculated
beforehand; in our scheme simply calling a new calculus func-
tion is enough to obtain different values: simple mathematical
operations like sums, multiplications, factorials are ideal for
such tests. Having known the correct result beforehand lets us
know if the execution was able to reach the expected result, or
if an artificially soft error was injected and not corrected. We
use a fixed probability of 1/6000000 = 1.66666667 ∗ 10−7

of introducing an error per iteration, which yields 4 errors on
average per execution.

A normal execution, without soft error detection and cor-
rection, of the calculation is performed before our prototype;
in both we measure the execution time and also the number of



LEVERAGING MODERN MULTI-CORE PROCESSORS FEATURES TO EFFICIENTLY DEAL WITH SILENT ERRORS, JUNE 2017 4

times it computed the correct value; that gives us the ability
to compare and evaluate our two main aspects: how much
performance overhead was induced and how much the success
rate is improved.

In a machine with a Intel Core i7 6600U processor and
16GB of RAM (more than enough for our test functions), we
repeated the process using 1,2 and 4 threads 500 times each.
The average of all configurations is shown in the next images.

Fig. 1. Relative execution time of the normal executions vs our prototype.

Fig. 2. Success Rate or the normal executions vs our prototype

In figure 1 we can see that the executions in general of
our prototype induce an average overhead of 80.65% and in
figure 2 we see that the success rate of our prototype nearly
gets to 100%; this happens because, as stated before there are
multiple reasons a transaction may abort and we only retry
an iteration 5 times before trying again without transactions
(hence if an error happens here it is not detected).

In general, these are preliminary which tells us we are down
a right path but should and will be further detailed using more
complex benchmarks such as PARSEC 2.0 [12].

VI. CONCLUSIONS AND FUTURE WORK

Even though Hardware Transactional Memory was origi-
nally as an alternative for traditional synchronization in con-
current shared memory applications, it exposes a very efficient
way to rollback a core’s cache which can be exploited as a
recovery mechanism, specially when dealing with soft errors.
We have presented a prototype that begins to supports this idea
through the preliminary results.

It seems most of the overhead incurred in our prototype lies
on the detection part of dealing with soft errors; but a more
complex analysis is required to fully measure how much time
is spent detecting and correcting the faults.

The fixed probability to inject an error we use, may not be
the most accurate in real life scenarios, specially because it
varies depending on a number of factors already described; it
gave us a good idea of how well the detection and correction
phases behaved, but more research is required in order to
establish the best way to simulate soft errors.

Another approach related to the discovery of error phase,
is use checkpointing techniques instead of replication; which
in [1] [3] tend to show that provide the best compromise
between transparency for the developer and efficient resource
usage. Through the combination of other features such as MPX
and more improvements for Hyper-Threading may allow us to
detect different kinds of errors and improve the performance
or our technique

REFERENCES

[1] D. Kuvaiskii, R. Faqeh, P. Bhatotia, P. Felber, and C. Fetzer, “Haft:
Hardware-assisted fault tolerance,” in Proceedings of the Eleventh Eu-
ropean Conference on Computer Systems. ACM, 2016, p. 25.

[2] V. Sridharan, N. DeBardeleben, S. Blanchard, K. B. Ferreira, J. Stearley,
J. Shalf, and S. Gurumurthi, “Memory errors in modern systems: The
good, the bad, and the ugly,” in ACM SIGPLAN Notices, vol. 50, no. 4.
ACM, 2015, pp. 297–310.

[3] Q. Liu, C. Jung, D. Lee, and D. Tiwari, “Clover: Compiler directed
lightweight soft error resilience,” in ACM Sigplan Notices, vol. 50, no. 5.
ACM, 2015, p. 2.

[4] M. Herlihy and J. E. B. Moss, Transactional memory: Architectural
support for lock-free data structures. ACM, 1993, vol. 21, no. 2.

[5] P. Hammarlund, A. J. Martinez, A. A. Bajwa, D. L. Hill, E. Hallnor,
H. Jiang, M. Dixon, M. Derr, M. Hunsaker, R. Kumar et al., “Haswell:
The fourth-generation intel core processor,” IEEE Micro, vol. 34, no. 2,
pp. 6–20, 2014.

[6] J. Reinders. Coarse-grained locks and transac-
tional synchronization explained. [Online]. Avail-
able: https://software.intel.com/en-us/blogs/2012/02/07/
coarse-grained-locks-and-transactional-synchronization-explained

[7] R. M. Yoo, C. J. Hughes, K. Lai, and R. Rajwar, “Performance
evaluation of intel R© transactional synchronization extensions for high-
performance computing,” in High Performance Computing, Networking,
Storage and Analysis (SC), 2013 International Conference for. IEEE,
2013, pp. 1–11.

[8] D. L. H. G. H. D. A. K. J. A. M. M. U. Deborah T. Marr, Frank Binns,
“Hyper-threading technology architecture and microarchitecture,” Intel
Technology Journal, vol. 6, no. 1, pp. 4–15, 2002.

[9] O. Oleksenko, D. Kuvaiskii, P. Bhatotia, C. Fetzer, and P. Felber,
“Efficient fault tolerance using intel mpx and tsx,” in Fast Abstract in
the 46th Annual IEEE/IFIP International Conference on Dependable
Systems and Networks, 2016.

[10] R. (Intel). Introduction to intel memory protection exten-
sions. [Online]. Available: https://software.intel.com/en-us/articles/
introduction-to-intel-memory-protection-extensions

[11] F. Haas, S. Weis, T. Ungerer, G. Pokam, and Y. Wu, “Poster: Fault-
tolerant execution on cots multi-core processors with hardware trans-
actional memory support,” in Parallel Architecture and Compilation
Techniques (PACT), 2016 International Conference on. IEEE, 2016,
pp. 421–422.

[12] C. Bienia and K. Li, “Parsec 2.0: A new benchmark suite for chip-
multiprocessors,” in Proceedings of the 5th Annual Workshop on Mod-
eling, Benchmarking and Simulation, vol. 2011, 2009.

[13] R. M. Stallman and G. DeveloperCommunity, Using The Gnu Compiler
Collection: For Gcc Version 7.0.1. GNU Press, 2016.


