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Abstract—The field of computational neuroscience,
in its efforts to reveal details of neuron operation,
has been developing a demand for biophysically mean-
ingful neural models. The increasing complexity of
said models and the need for large-scale or real-time
experiments have presented significant challenges to
the world of high-performance computing (HPC). We
explore Intel’s newest generation of Xeon Phi comput-
ing platforms, named Knights Landing (KNL), as a
way to match the need for processing power and as
an upgrade over the previous generation of Xeon Phi
models, the Knights Corner (KNC). Our analysis is
done using a simulator, which implements a state-of-
the art physiologically plausible model of the inferior-
olive nucleus (InfOli), that has been ported on both
generations of Xeon Phi platforms. The application
uses the OpenMP interface for parallelization and the
available vectorization buffers present in Xeon Phi
platforms for Single-Instruction Multiple Data (SIMD)
processing. In this analysis we provide insight as to
how efficiently the application takes advantage of both
Xeon Phi architectures and how the KNL measures
against its predecessor. An out-of-the-box porting of
the application onto Knights Landing results in our case,
on an average 2.4× speedup with a 48% less energy
consumption than KNC.

Keywords—Intel Xeon Phi, Knights Landing, Compu-
tational Neuroscience

I. Introduction
In recent years neuroscientists have been gradually

revealing details of neuron operation. Using this knowledge,
there is a wide research interest in studying the behaviour
of single-neuron, a network of neurons and eventually
study brain-wide populations of neurons. Simulating these
neuronal networks on various platforms is an active field
of research [1], [2].

In our current comparative study we feature a simulator
for biophysically plausible neuron models, targeting a part
of the human brain named the Inferior Olivary Nucleus,
which specializes in the coordination and learning of motor
function [3]. The modeling accuracy is at the cell conduc-
tance level (Hodgkin and Huxley models [4]), belonging
at an analytical and complicated class of models which

allow us to expose fine details of the neuron’s mechanisms.
This workload is an excellent candidate for parallelization
on HPC architectures, such as the Intel Xeon Phi system
[5], due to the large inherent parallelism of the models.
Additionally, it constitutes a realistic worst-case scenario in
terms of model complexity, hence a benchmark for neuron
modeling workloads.

In order to explore whether Intel’s newest generation of
the Xeon Phi computing platform, named Knights Landing
(KNL), is a suitable platform for neuroscientific workloads,
in the current paper we evaluate its performance and
energy consumption compared to the previous version,
Knights Corner (KNC). We utilize the aforementioned
Inferior Olivary Nucleus simulator, named InfOli, which
was developed for the KNC generation of Xeon Phi [6].
This comparison will highlight how the evolution of Intel’s
Xeon Phi architecture can improve the performance of a
challenging application in the field of computational neuro-
science. Since the application is fine-tuned to the previous
version of Xeon Phi processors, we will, accordingly, explore
the behaviour of an “out-of-the-box” application on the
KNL.

II. Evaluation
The InfOli simulator is a transient simulator; brain

activity is calculated in simulation steps, with each step
set to represent 50us of activity in a fixed manner. The
steps are calculated sequentially, until the entirety of the
requested brain activity is computed. In order to boost
simulation speed, OpenMP [7] has been employed to
parallelize the application. The network is divided in equal
parts and assigned to different OpenMP threads, ensuring
a balanced distribution of workload.
The measurements presented in this section have been

carried out using two different generations of Intel Xeon
Phi. The Knights Corner co-processor’s model is 3120P,
featuring 57 cores at 1.1GHz, each supporting up to 4
threads running concurrently via multithreading technology.
Cores run at 300W thermal design power (TDP). The
Knights Landing processor’s model is 7210, with 64 cores
at 1.3GHz and similar multithreading capacities. Its TDP
is noticeably lower at 215W. MCDRAM for the KNL was
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set to cache mode as this setting is completely transparent
to software and allows for "out-of-the-box" codes like
the neuron simulator being tested, to take advantage
of the high-bandwidth-memory technology. As for the
clustering mode, quadrant configuration was chosen based
on recognition that the cache-quadrant combination offers
performance gain to HPC applications [8], [9]. We include
performance curves from an Intel Xeon E5-2609-v2, a 4-
core server-grade processor utilizing 4 threads concurrently.
The processor’s simulation speed acts as a baseline.
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Figure 1: Execution Time per second of simulated brain
activity, comparison between Knights Corner (KNC) and
Knights Landing (KNL) on different Simulator configura-
tions. Performance on Xeon processor (4 threads) added
as a baseline.

All experiments in Figure 1 have been carried out using
approximately the maximum amount of threads available
to each platform. For the KNC, we used 220 threads,
whereas the KNL offered 256 threads. On average the
KNL platform outperforms the KNC platform by 2.4× in
terms of execution time. The maximum speed-up is 6×,
while in some cases the KNC comes in front with up to 1.6×
speed up over the KNL. More specifically, we can observe
that, in the cases of low connectivity density (Figure 1a),

which translates to a low amounts of workload per thread,
the KNL shows a superior performance to the KNC. On
the other hand, as the computational workload assigned
to each thread increases for denser networks, the KNC
performs significantly better (Figure 1b). The performance
gap between the two platforms lessens as the KNC can use
its assets with increasing efficiency, since the application
has been optimized with the KNC architecture in mind.
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Figure 2: Execution Time per second of simulated brain
activity, comparison between Knights Corner (KNC) and
Knights Landing (KNL) on different Simulator configura-
tions. Performance on Xeon processor (4 threads) added
as a baseline.

In Figure 2, we present information regarding the energy
required by each computing fabric in order to simulate a
second of brain activity, measured in mWh. The Figure
is directly linked to Figure 1, since energy consumption is
dependent on execution time needed for simulation of each
second of brain activity. As such, we can observe similar
patterns between the two Figures. On average we have to
note that the KNL consumes 48% less energy than the KNC.
Because of the KNL’s lower TDP and better performance
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for light workloads, there is a significant reduction in energy
consumption when computing for small networks. To put
this claim into perspective, whereas the simulation of one
second of brain activity in a network of 4000 neurons,
with a density of 250 synapses per neuron (Figure 2),
requires over 1200𝑚𝑊ℎ for the KNC, the KNL consumes
under 300𝑚𝑊ℎ for the same workload, improving on energy
efficiency by a factor of 4×.
On the contrary, due to the KNC’s smaller execution

times for larger, denser networks, it is preferable from
a power consumption standpoint to the KNL for such
workloads. A network of 10,000 neurons, each forming
1,000 synapses with the rest of the network, requires 27%
less energy on the KNC (1600𝑚𝑊ℎ per second of simulated
time) than on the KNL (2200𝑚𝑊ℎ for the same amount
of activity).
In HPC, efficiency metrics offer insight as to how well

an application utilizes the underlying platform’s resources.
In our case, we calculated the efficiency metric by dividing
execution speedup with the number of OpenMP threads
spawned, with a range of OpenMP threads utilized from 1
to 200, on both platforms. For the KNL, we observed that
the efficiency of utilizing up to approximately 50 threads
remains at satisfactory levels. In these cases, each core
spawns either one or two threads (due to the selected
balanced thread affinity) and, in contrast to the KNC, the
KNL’s cores operate significantly better when operating
with only one thread [8].

On larger networks, however, KNC offer better op-
portunities to utilize its computational assets efficiently,
maintaining a speedup-to-threads ratio above 70% even
for 200 threads. The KNL’s threading efficiency sharply
declines when employing massive degrees of parallelism,
dropping below 40% when using more than 140 threads.
The application’s inability to utilize the entirety of KNL’s
assets efficiently to tackle demanding simulations explains
the performance gap between the two platforms for larger
workloads. This inability is mostly attributed to the
fact that the simulator has been fine-tuned to the KNC
environment and has been tested “out-of-the-box” on the
KNL.

III. Conclusion
In this evaluation, a computationally demanding appli-

cation from the field of computational neuroscience that
had previously been extensively developed and optimized
for the Intel KNC, has been tested “out-of-the-box” for
the second generation of Xeon Phi, the KNL. The InfOli
biophysically-accurate simulator’s performance was tested
using a range of workloads, from small, unconnected
neuronal populations to larger, dense networks. The results
were evaluated from both a simulation-speed and a power-
efficiency standpoint. On average KNL offers a speed up of
2.4× while consuming 48% less energy. Smaller workloads,
by taking advantage of the KNL’s superior single-threaded
performance, exhibit very significant gains in both speed
and, even more so, energy consumption, with specific

experiments demanding 75% less 𝑊ℎ of energy per second
of simulated brain activity on the KNL. On the other
hand, without further fine-tuning of the application to the
architectural details of the KNL, OpenMP-thread efficiency
suffers when running on the KNL, causing the simulator
to handle more demanding networks poorly, relatively to
the optimized KNC version. Furthermore, throughout the
whole range of experiments, it has been shown that the
KNL offers a more robust, dependable performance curve
with little variability.

These findings are promising enough to warrant further
optimization of the simulator for the new generation of
the Xeon Phi. As future work, we would suggest using
an optimized version of the simulator on a cluster of
KNL processors, in order to simulate neuronal networks of
much larger sizes and take advantage of Intel’s OmniPath
technology for inter-node communication [10].
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