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Abstract—Seismic-volcanic signals are harder to locate than
seismic-tectonic signals. The difficulty lies in the emergent wave-
form of seismic-volcanic signals. The alternative methods requires
an exhaustive search over the volcano’s volume in order to find
the most likely epicenter. We present the algorithmic analysis of
an accepted method to locate seismic-volcanic signals and the
design of a parallel application that implements it.

We demonstrated that the implementation scales linearly with
the number of events and the number of nodes. From the
experimental data, we developed a model to predict execution
time with an accuracy of 90%. We discuss widely about model
derivation and assumptions. In special, the practical advantages
of using simple experimental models instead of complex ones, if
the simpler one has high accuracy. In that case the the ignored
factors are represented by the error model.

I. INTRODUCTION

In this work, we present the design and analysis of a parallel
Python application for locating the source of seismic-volcanic
signals. Seismic activity in volcanoes isn’t limited to classical
tectonic activity, it includes signals radiated from the motion
of internal fluids and gases. These signals are very different
from tectonic ones, which makes then impossible to study with
the standard methods [1].

Tectonic signals are easy to pick because its waveform has
an abrupt beginning and the event last a few seconds (top part
of Figure 1). In the other hand, the volcanic signal waveform
is emergent, it ramps up slowly from background noise and
can last days. The classic method for seismic event epicenter
location depends on clearly identifying the event’s beginning,
therefore, it cannot be used on volcanic signals [1], [2].

The workaround method involves extracting features from
the signal at seismometers and then simulating how seismic
propagation affects those features. This is calculated for every
point in a regular grid over the volcano’s volume. The grid
point that produces the smaller error is chosen as the most
likely event epicenter [1], [3], [4], [5], [6].

Naturally, this method is sensitive to grid resolution. The
finer it becomes the more precise it gets, but also increases
computing time. Therefore, researchers must trade-off grid res-
olution for computing time. There are two obvious strategies
to diminish this problem, not mutually excluding: an smarter
search algorithm and parallelism.

The first one uses an optimization technique like hill climb-
ing or random walk. Nevertheless, it’s sill possible to increase
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grid resolution until computing time turns unacceptable. The
second, in its simplest form, uses brute force to evaluate every
grid point, but divides the work in many processors, effectively
dividing computing time by the number of processors. We will
show that even this naive approach works if the number of
processors scales proportionally to the number of grid points.

In this work, we build a parallel implementation of the
method proposed by [1]. First, we analyze the algorithm
looking for data interdependence and parallelism opportunities
(section III), we conclude that all tasks could be executed in
parallel using a single reduce instruction at the end (section
IV). Second, we present a parallel implementation using the
Message Passing Interface Standard (MPI) and demonstrate
it scales linearly, as predicted by theory (section V). Finally,
we present a simple experimental model to estimate execution
time.

II. THE METHOD

In classic seismology, the tectonic signal source is modelled
as an explosion with orientation and the ground effect as a lin-
ear system. Therefore, the signal perceived by the seismometer
is modelled by:

m(th) = ’I“(t) * g(X7t§Xs) * S(Xs,t) (1

Where:

o S(xs,t) is the source signal with epicenter at Xs.
e g(x,1;xs) is the linear system that models how the source
signal is perceived at x.

o 7(t) is the instrument response.

e m(x,t) is the ground motion at station location x.

The standard method for seismic-tectonic event location
[7] considers only time of arrival to every seismic station,
essentially reducing the waveform to:

m(x,t) = u(x,Xs) * $(Xs, t) ()

Where u(x, Xs) is the delay function and models how fast
the seismic waves propagates. As mentioned, in general, it’s
not possible to clearly identify the beginning of seismic-
volcanic signals. As figure 1 shows, the tectonic signal starts
abruptly, while the volcanic signal ramps up slowly from back-
ground noise. A simple analogy is to compare the beginning of
a thunder with the beginning of a teapot whistle. The seismic-
tectonic signal would be the thunder and the seismic-volcanic
one would be the teapot whistle.

Thus, another waveform characteristic different from time of
arrival must be used. Seismic waves, as any other mechanical
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Figure 1: Waveform difference between a seismic-volcanic
signal and a seismic-tectonic one. First, notice that the tremor
amplitude is in the same order of magnitude as the background
noise (first 3.5 s of the signal), also it seems similar to noise
and last for a long time. The seismic-tectonic signal is around
5 orders of magnitude bigger than background noise, has a
clear beginning and last only for a few seconds.

wave that expands in a dissipate medium, losses amplitude
as a function of distance. [1] suggest to use Equation (3) to
model amplitude decay as function of distance:

e—B’!'
A(r) = AO , (3)
with
"
QB
Where:
o A(r) is the wave amplitude at a distance r from the
source.

e A is the source amplitude.

o f is the source signal’s fundamental frequency.

e () is the quality factors, it models how much energy is
transformed into heat every cycle.

o [ is the wave velocity at frequency f.

The factor 1/r corresponds to the geometric attenuation
(or geometrical spreading): as a wave expands, its energy
must fill a bigger volume, thence, the energy per unit of
volume decreases. The factor e~ 5" is the anelastic attenuation:
how fast energy is transformed into heat. Notice that time
doesn’t appear explicitly in equation (3), as wanted. Also, the
full waveform is reduced to a single value, obtained by the
maximum peak or the root mean square (RMS) value.

Before reducing the seismometer signal to a single ampli-
tude value, it must be preprocessed:

1) Deconvolve the instrument response, the r(¢) from
Equation (1).

2) Convolve with the site effect factor.

3) Band-filter around f, from Equation (3).

Sometimes the shallow layers below the seismometer am-
plify the seismic signal. The site effect factor is a transfer
function that models that amplification [8], [9], [10].

Now, for every grid point (x,y, z) and for a given source
amplitude Ag, calculate the distance to every seismometer r
and substitude the values in equation (3). Estimate the total
error with equation (4), where ¢ iterates over the stations and
the superscript obs means observed (recorded) signal at every
station:

S (A — APy

E =
" > (Aghe)?

“4)

The amplitude value Ag is also unknown, so it’s part of
the search space, that means, equations (3) and (4) must be
evaluated in a range of amplitudes values. Finally, the pair
of source position and amplitude value that produces the
minimum error is chosen as the most probable epicenter for
the event.

III. ALGORITHM ANALYSIS

Succinctly, the method consist on finding the
tuple  (z,y,2z,Ap) that minimizes the function
Err(z,y, z, Ag, A°®®), as defined in equations (3) and
(4). The brute force approach evaluates Err for every
possible combination of parameters within the physic and
geographic limits. Then, at the end, applies a min () reduce
operation. The following pseudo-code displays a plain
implementation of the algorithm:

Listing 1: A plain implementation of the source location
algorithm

err is a map of tuple to float
for x in x_range:
for y in y_range:
for z in z_range:
for A_0O in A_range:

error = 0

obs =0

for s in station_list:
r := s.distance(x, y, z)
A := A_0 x attenuation(r)

error += power(A — s.
amplitude , 2)
+= power(s.amplitude
» 2)
err[(x, y, z, A_0)] =
error / obs)

obs

sqrt(

loc := min(err)

Every evaluation of Err is completely independent, thus,
the algorithm is embarrassingly parallel. Also, every event
is independent, providing another source of parallelism for
locating all the events in a catalog. The challenge is to
distribute every evaluation of Err among the cores and
nodes of a supercomputer considering the modern many-core
architectures and non-uniform memory access.
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Figure 2: MPI-communicators design. The majority of col-
lective operations are mapped to intra-node communicatorios.
Namely, events are distributed using the coarse-grained com-
municator, while the algorithm from listing 1 is mapped to
fine-grained communicators

IV. PROGRAM DESIGN

The current trend in High Performance Computing (HPC)
shows preference for many-core architectures. For example,
the fastest computer in the world features a 260 cores proces-
sor, while the following nine supercomputers feature proces-
sors with 64, 16 or 12 cores [11].

Efficient collective operations are critical for obtaining a
good performance of HPC applications. Because intra-node
communication is cheaper that multi-node, using collective
operations in intra-node communicatiors instead of multi-node
communicators improves performance [12], [13]. Hence, we
mapped the majority of required collective operations to intra-
node communicators.

From the global communicator, we used the IP address to
group ranks in the same node to a new communicator, named
fine-grained. There are as many fine-grained communicators as
nodes, as Figure 2 displays. All the zero ranks from every fine-
grained communicators are grouped into a new communicator,
named coarse-grained.

Events are distributed using the coarse-grained communi-
cator. Also, results are collected by rank zero at that commu-
nicator and printed. The search space (i.e. z, y, z and Ag)
is divided between all the ranks belonging to the same fine-
grained communicator. So, the final min () reduce operation
displayed in Listing 1 (which is a collective operations) is
executed intra-node only.

Table I shows a description of the parameters for seismic-
volcanic event location. The last three parameters (stations list,
events list and Digital Elevation Model) are easy to generate.
They can be retrieved from sources like IRIS!, but in general,
seismic observatories will host repositories of relevant local
data.

Thttps://www.iris.edu/hq/

Table I: Parameters list for the seismic-volcanic event location

Parameter Description
A; Initial amplitude value
Ay Final amplitude value
dA Amplitude step
Zrange Maximum depth
Signal fundamental frequency
B Seismic wave speed at frequency f
Q Attenuation factor

Stations list
Events list
DEM

Specifies station name a location
Contains signal amplitude for every station at each event
A digital elevation model in asc format

The f, § and ) parameters must be adjusted by the
researcher, using her knowledge of the volcano singularities
and characteristics. zrange, Ai, Ay and dA are actually part
of the search space and must be adjusted iteratively as part
of the methodology refinement. That means, the search range
must be reduced to contain the solution and avoid examining
empty space.

V. EXPERIMENTAL EVALUATION
A. Validation

Turrialba Volcano is a stratovolcano located in the cen-
tral region of Costa Rica. Its edifice heights 1900 meters,
peaking 3340 meters above mean sea level. It belongs to the
Coordillera Central and shares its basement with the Irazi
Volcano [14].

Since 1996, national seismic observatories registered a
change in seismicity and emanated gas composition at Tur-
rialba Volcano. Seismic and degasification activity intensified
since 2003 and finally the volcano entered into erupting activ-
ity in 2007, with peaks of activity in the following years. The
Red Sismolgica Nacional estimates that around two million
people could be affected by the activity of Turrialba Volcano
[14].

To test out if our implementation output has physical sense,
we processed 430 LP-tremor events that occurred from May
to June 2016. Table II specifies the parameter values used in
the location process. Figure 3 displays the number of events
located at each grid point.

Because there aren’t any previous experiments on the field,
we relay on the expert opinion to evaluate software cor-
rectness. According to seismologists from Red Sismoldgica
Nacional and Observatorio Vulcanoldgico y Sismoldgico de
Costa Rica, the number and distribution of events, as displayed
in figure 3 matches the expected behavior. The events are
aligned from south-west to north-east, and the biggest number
of events appears under the summit.

B. Experimental setup

The software was tested at the Kabré supercomputer, hosted
by Centro Nacional de Alta Tecnologia. It consists of 20 nodes
interconnected with 1Gb ethernet. Each node has a Intel Xeon
Phi 720 with 64 cores at 1.6 GHz and 96 GB of memory.

2ASTER GDEM is a product of NASA and METI
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Figure 3: Location of 430 LP-tremor events occurred from
May to June 2016. The heatmap shows the number of events
located at every 100 m cubic cell.

Table II: Parameters used in the software validation

Parameter  Value
A; 0.0
Aj 0.007
dA 0.0001
Zrange 2000
2 Hz
B 2300 m/s
Q 50
DEM Aster GDEM 20052, 100 m resolution

C. Scalability

From section III we concluded that the location algorithm
is embarrassingly parallel, therefore it should exhibit nearly
linear speedup with respect to the number of processing units.
Also, for the same reason, the compute time must exhibit linear
growth with respect to the number of events it receives as
input. Because we use all cores in a single node to explore the
search space, in practice, our processing unit isn’t the number
of cores but the number of nodes.

Table III features the result of measuring compute time with

Table III: Elapsed time for different number of nodes and
number of events

Nodes Events Median Time (s)  Repetitions
6 430 1080 5
5 430 1267 5
4 430 1569 5
3 430 2034 5
2 430 3002 5
1 430 5864 5
6 6 72.01 5
6 12 89.87 5
6 24 114.2 5
6 48 173.3 5
6 96 285.2 5
6 192 504.5 5
6 384 968.2 5

Table IV: Elapsed time predicted by the model in equation (5)
and the experimental evaluation

Nodes Events Predicted Time (s)  Elapsed Time (s)  Error (%)
3 92 465.8 462.3 0.1
1 272 3286 4002 17.9
5 31 142.7 112.6 26.7
4 348 1231 1035 19.0
6 12 85.70 52.15 64.3
5 157 485.8 450.1 7.9
4 226 820.5 846.4 3.1
5 93 311.5 282.1 10.4
2 315 2090 2186 44
6 121 334.5 312.7 7.3

different values of the indipendent variables (number of nodes
and number of events). The number of nodes goes from one
to six, which is the maximum number of nodes allowed by
the Kabré’s batch system. We fixed the number of events to
430.

In the other test set, we fixed the number of nodes to 6 and
increased the number of events by multiplying the previous
by two, starting from 6 events until 384 events. For every test,
we made five repetitions. Table III shows the median time of
those repetitions. We chose the median time over the mean
time to reduce the possible bias introduced by outliers.

To make evident the linear behavior of the implementation,
we ploted speedup and elapsed time in Figure 4. For both, we
calculated the trend line. This gives us an handy linear model
to estimated the elapsed time at any configuration of number
of nodes and events:

epn = e/(0.89n + 0.17) %)
t =2.36(0.89 - 6 + 0.17)epn + 58.31

Where:

« ¢ is the number of events.

e n is the number of nodes.

In Section VI we will further discuss this model. By now,
our interest is to evaluate it’s accuracy. In order to do so, we
randomly sample ten ordered pairs of number of nodes and
number of events. We used a uniform probability distribution
and sampling with replacement. Table IV features the result
of evaluating the model by the sampled ordered pairs.

We don’t perform the evaluation tests in Table IV multiple
times. Instead, we argue that by increasing the number of inde-
pendent test, the percent error will converge to the mean value.
This reasoning is justified by the Central Limit Theorem, if
we assume that the model error is equal for every point in
the experimental domain (from 1 to 6 nodes and from 6 to
430 events). The median error value is 10.4%. That value is
accurate enough to estimated the computing time.

VI. DISCUSSION

From the analysis in Section III we discovered that every
evaluation is completely independent from the others and the
algorithm requires only a min () reduce operation at the end.
Also, every event location is independent from the others,
providing another source of parallelism. If the required time
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Figure 4: Speedup and elapsed time of the implementation. The implementation displays linear behavior.

for every evaluation of the Err function (%.,,) and the min ()
reduction (%,.) is known, we could calculate a lower bound for
the required time to solve the location problem for a data set.

Hence, with e the total number of events in the data set and
g the number of grid points, we have:

T:etr-i—g terr (6)

Conceding that an implementation exhibits perfect linear
scaling, the total time would be T}, = T//w where w is the
number of workers. That means, the work is perfectly dis-
tributed among participating workers. Nevertheless, in practice
that’s very difficult to achieve with an static partition (i.e.
the work is distributed before the computation begins). That
happens because of two reasons:

o The number of operations is not divisible by the number
of workers. This leads to a small load imbalance.

o The operations are not truly independent. Here, the
min () operations needs the Err() value for every grid
point to evaluate. This imposes an order of evaluation
that also could lead to load imbalance.

In principle, it is possible to predict the effect of load
imbalance with a static distribution of the work. Moreover,
because it depends on the residue of dividing the work load
among the workers, in many cases it shows a periodic behavior
as a function of work load, as figure 5 shows. Nevertheless,
restrictions like the order of evaluation make hard to predict
that behavior.

The alternative is using a Run Time System (RTS) that
distributes the work at run time. A RTS offers flexibility
and adaptability, but is more sensible to communication cost
between workers physically separated at different machines.
For our case, two considerations are relevant:

o With a static workload distribution, time invested in
management reduces to zero. While with a RTS, time
invested in management, in general, isn’t negligible.
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Time (s)
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T T T T T
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Figure 5: Elapsed time as a function of problem size (load).
This is an example of the periodic behavior of load imbalance.
The residual work that cannot be equally distributed are
assigned to a single worker, thus, increasing total execution
time.

¢ Collective operations, like min (), executed through the
network can be costly.

This application is simple enough to reach an optimum static
workload distribution. If programmed with flexibility in mind,
the first stage could consist of workers configuration analysis.
Different workload distribution schemes could be evaluated
using a more complex model than the derived in this work, in
order to find a distribution that minimizes execution time.

A. About the experimental model

The model presented in equations (5) was deduced exper-
imentally. First, assume that exist a function F' that takes
the number nodes and the number of events and yields the
execution time, F'(n,e) — IR. Even when F isn’t linear with
respect to n nor e, if the problem is truly embarrassing parallel,
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Figure 6: A combined (not necessarily linear) model can be
derived from simpler ones that explains how the quantity of
interest follows every orthogonal variable.

as we conclude in Section III, Then n and e must be orthogonal
variables.

Orthogonality means that the variables could be manipulated
individually. In this model, we can fix one and modify the
other to find a linear model that explains how F' changes as
the modified variable changes. Combining those linear models
generates a model for F' That correctly extrapolates to any
point in the experimental domain in which we sampled both
variables. Figure 6 visually represents that idea.

Figures 4a and 4b show those simple lineal models that
explain how F' changes as a function of n with e fixed
and the other way around. There are two ways to represent
mathematically the meaning of speedup. The first one, and
most common, is to interpret speedup as a factor that divides
total computing time. The other way is to interpret it as a factor
that divides total work. That’s the meaning of the first equation
in (5). The second equation is a linear fit of how much time
it takes to compute epn events. The trend was derived using
six nodes, so it includes the speedup provided by those extra
nodes, thus the epn value is increased by the constant factor
0.89 -6 4 0.17 to compensate that extra speedup.

Making a case for this methodology, it is very simple to
derive and only requires an appropriate sampling. It models,
in a best effort fashion, ignored considerations, like network
delay, start-up time, load imbalance and similar. Nevertheless,
it’s valid only for the experimental domain. Theory predicts
non-linear behavior of any application for big enough param-
eters, that is, millions of cores or billions of grid points. This
model doesn’t captures that behavior.

A more complex model could capture that behavior by
taking into account many of the considerations we ignored.
Although, it implies measuring individual elements, an extra
effort that doesn’t pay off if the simpler model accuracy is
acceptable.

VII. RELATED WORK

The method presented in this paper was proposed and
evaluated in [1], [6]. It suits the equipment installed on
Turrialba Volcano: an un-arranged seismic network in which
every station position was choose based on geophysics, land
ownership and practical criteria. [5], [15] present a method
to locate seismic-volcanic events using triangular seismic
antennas. In that configuration it’s possible to use seismic

wave slowness to estimate its orientation and triangulate its
epicenter using a small network of seismic antennas.

[16] present a novel method to locate seismic-volcanic
events using the cross-correlation between every pair of sta-
tions. The idea is the following, it assumes that g(x, ¢; Xs), the
linear system from Section II that models ground response, is
similar for all stations and the signal is the same, therefore, the
signal in every station must be very similar. Hence, the cross-
correlation peaks a global maximum when the signal from two
stations is in phase. Using the phase difference, i.e. the delay
between the peaking in both signals, it’s possible to estimate
the source location. This method is sensible to anomalies in
the velocity model used, as much as the amplitude method
presented in our work.

Notwithstanding, mentioned publications don’t report about
code implementation or its availability. Similar software for
the area, for example [17], [18], focus on automatic signal
classification. Thence, our work is a contribution to the area.

VIII. CONCLUSIONS

In this work we presented the design and implementation
of a parallel python application for seismic-volcanic event
location. These signals are harder to locate that seismic-
tectonic ones because of its source mechanics and hetero-
geneous propagation medium. The location method used in
the implementation extracts the signal amplitude and models
its decay as a function of distance. A brute force approach
evaluates all possible solutions to find the one that produces
the minimum error.

From the method analysis, we concluded it’s embarrassingly
parallel, requiring only a min () reduce operation to find the
optimum source location. The design aim to exploit the many-
core architecture commonly available in HPC platforms by
mapping collective operations to intra-node communicators.
We tested the implementation scalability with respect to the
number of nodes and the number of events. For both variables
it shows linear behavior.

From experimental data we developed a model to predict
execution time given the number of events and number of
nodes. The model has an accuracy of 90%. We argue that
simple experimental models are preferable over complex ones
if accuracy is high enough to estimate computing time. In
other words, the effect of ignored factors can be represented
as the model error.

ACKNOWLEDGMENT

The authors would like to thank Javier Pacheco, from the
Observatorio Vulcanolgico y Sismolgico de Costa Rica and
Mauricio Mora, from the Red Sismolgica Nacional, for their
significant guidance.

REFERENCES

[1] J. Battaglia and K. Aki, “Location of seismic events and eruptive
fissures on the piton de la fournaise volcano using seismic amplitudes,”
Journal of Geophysical Research: Solid Earth, vol. 108, no. B8, 2003.
[Online]. Available: https://agupubs.onlinelibrary.wiley.com/doi/abs/10.
1029/2002JB002193



MC-7205: TEMA SELECTO DE INVESTIGACIN

[2]

[3]

[4]

[5]

[6]

[7]
[8]

[9]

[10]

(1]

(12]

[13]

[14]

[15]

[16]

[17]

[18]

T. Diehl and E. Kissling, “Users Guide for Consistent Phase Picking
at Local to Regional Scales,” Swiss Federal Institude of Technology
Zurich, Tech. Rep., 2008.

H. Kumagai, R. Lacson, Y. Maeda, M. S. Figueroa, T. Yamashina,
M. Ruiz, P. Palacios, H. Ortiz, and H. Yepes, “Source amplitudes
of volcano-seismic signals determined by the amplitude source
location method as a quantitative measure of event size,” Journal
of Volcanology and Geothermal Research, vol. 257, pp. 57 — 71,
2013. [Online]. Available: http://www.sciencedirect.com/science/article/
pii/S0377027313000693

B. Taisne, F. Brenguier, N. M. Shapiro, and V. Ferrazzini, “Imaging
the dynamics of magma propagation using radiated seismic intensity,”
Geophysical Research Letters, vol. 38, no. 4, 2011. [Online]. Available:
https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2010GL046068
J. Mtaxian, P. Lesage, and B. Valette, “Locating sources of volcanic
tremor and emergent events by seismic triangulation: Application
to arenal volcano, costa rica,” Journal of Geophysical Research:
Solid Earth, vol. 107, no. B10, pp. ECV 10-1-ECV 10-18, 2002.
[Online]. Available: https://agupubs.onlinelibrary.wiley.com/doi/abs/10.
1029/2001JB000559

G. D. Grazia, S. Falsaperla, and H. Langer, “Volcanic tremor
location during the 2004 mount etna lava effusion,” Geophysical
Research Letters, vol. 33, no. 4, 2007. [Online]. Available: https:
/lagupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2005GL025177

K. Aki and P. G. Richards, Quantitative Seismology, 2nd ed. University
Science Books, 2002.

K. Mayeda, S. Koyanagi, and K. Aki, “Site amplification from s-
wave coda in the long valley caldera region, california,” Bulletin of the
Seismological Society of America, vol. 81, no. 6, p. 2194, 1991.

S. Koyanagi, K. Aki, N. Biswas, and K. Mayeda, “Inferred attenuation
from site effect-correctedt phases recorded on the island of hawaii,”
pure and applied geophysics, vol. 144, no. 1, pp. 1-17, Mar 1995.
[Online]. Available: https://doi.org/10.1007/BF00876471

K. Kato, K. Aki, and M. Takemura, “Site amplification from coda
waves: Validation and application to s-wave site response,” Bulletin of
the Seismological Society of America, vol. 85, no. 2, p. 467, 1995.

E. Strohmaier, J. Dongarra, H. Simon, and M. Meuer. (2017) The top
500 list. [Online]. Available: https://www.top500.org/lists/2017/11/

J. Pjesivac-Grbovic, T. Angskun, G. Bosilca, G. E. Fagg, E. Gabriel,
and J. J. Dongarra, “Performance analysis of mpi collective operations,”
in 19th IEEE International Parallel and Distributed Processing Sympo-
sium, April 2005.

R. Thakur and W. D. Gropp, “Improving the performance of collective
operations in mpich,” in Recent Advances in Parallel Virtual Machine
and Message Passing Interface, J. Dongarra, D. Laforenza, and S. Or-
lando, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003, pp.
257-267.

Red Sismolgica Nacional. (2018) Volcanes de costa rica ii: Turri-
alba. [Online]. Available: http://rsn.ucr.ac.cr/component/content/article/
109-vulcanologia/volcanes-de-costa-rica-ii/32-turrialba?Itemid=225

B. Di Lieto, G. Saccorotti, L. Zuccarello,b M. L. Rocca, and
R. Scarpa, “Continuous tracking of volcanic tremor at mount etna,
italy,” Geophysical Journal International, vol. 169, no. 2, pp. 699—
705, 2007. [Online]. Available: +http://dx.doi.org/10.1111/j.1365-246X.
2007.03316.x

K. L. Li, G. Sgattoni, H. Sadeghisorkhani, R. Roberts, and
O. Gudmundsson, “A double-correlation tremor-location method,”
Geophysical Journal International, vol. 208, no. 2, pp. 1231-1236,
2017. [Online]. Available: +http://dx.doi.org/10.1093/gji/ggw453

M. Masotti, R. Campanini, L. Mazzacurati, S. Falsaperla, H. Langer, and
S. Spampinato, “Tremorec: A software utility for automatic classification
of volcanic tremor,” Geochemistry, Geophysics, Geosystems, vol. 9,
no. 4, 2008. [Online]. Available: https://agupubs.onlinelibrary.wiley.
com/doi/abs/10.1029/2007GC001860

A. Messina and H. Langer, “Pattern recognition of volcanic tremor data
on mt. etna (italy) with kkanalysisa software program for unsupervised
classification,” Computers and Geosciences, vol. 37, no. 7, pp. 953 —
961, 2011. [Online]. Available: http://www.sciencedirect.com/science/
article/pii/S0098300411001294



