A comprehensive deep learning pipeline for arrhythmias multi-classification with electrocardiography data
| dc.contributor.author | Quirós-Corella, Fabricio | |
| dc.contributor.author | Loaiza, Randall | |
| dc.contributor.author | Matarrita, Rosa | |
| dc.contributor.author | Meneses, Esteban | |
| dc.date.accessioned | 2025-10-10T20:56:27Z | |
| dc.date.available | 2025-10-10T20:56:27Z | |
| dc.date.issued | 2025 | |
| dc.identifier.doi | 10.1109/BIP63158.2024.10885391 | |
| dc.identifier.uri | https://hdl.handle.net/20.500.12337/10849 | |
| dc.language.iso | en | |
| dc.publisher | 2024 IEEE 6th International Conference on BioInspired Processing (BIP) | |
| dc.relation | https://doi.org/10.1109/BIP63158.2024.10885391 | |
| dc.rights | acceso abierto | |
| dc.rights.uri | http://creativecommons.org/licenses/by-nc-sa/4.0/ | |
| dc.subject | ARRITMIAS | |
| dc.subject | INTELIGENCIA ARTIFICIAL | |
| dc.subject | ELECTROCARDIOGRAMA | |
| dc.subject | APRENDIZAJE | |
| dc.title | A comprehensive deep learning pipeline for arrhythmias multi-classification with electrocardiography data | |
| dc.type | artículo de investigación |
